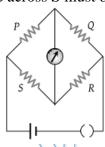


DPP – 5 (Current Electricity)

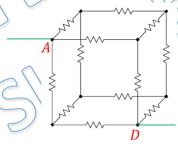
Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/55

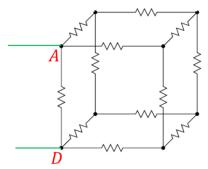

Video Solution on YouTube:-

https://youtu.be/Mj1GqNdb4CQ

Written Solution on Website:-


https://physicsaholics.com/note/notesDetalis/52

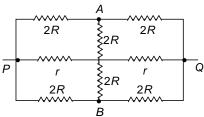
Q 1. In a Wheatstone bridge circuit $P=2\Omega$, $Q=3\Omega$, $R=6\Omega$ and $S=8\Omega$. In order to obtain balance, shunt resistance across S must be:

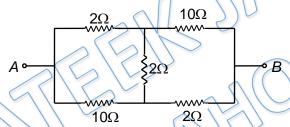

- (a) 2Ω
- (b) 3Ω
- (c) 6Ω
- (d) 8 Ω

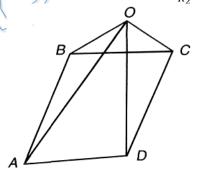
Q 2. If all the resistors are identical having resistance $R\Omega$. Find equivalent resistance between A and D?

- (a) $\frac{7R}{12}$
- (b) $\frac{4R}{2}$
- (c) $\frac{3R}{4}$
- (d) $\frac{3}{7}$

Q 3. If all the resistors are identical having resistance $R\Omega$. Find equivalent resistance between A and D?

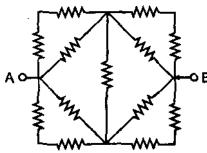



hysicsaholics

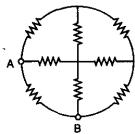

- (a) $\frac{7R}{\frac{12}{3R}}$ (c) $\frac{3R}{4}$
- (b) $\frac{4R}{3}$ (d) $\frac{12R}{7}$
- Q 4. The effective resistance between point P and Q of the electrical circuit shown in the

- (a) 2Rr/(R+r)
- (b) 8 R(R+r) / (3R+r)
- (c) 2r + 4R
- (d) 5 R / 2 R + 2r
- Find the effective resistance (in ohm) between the points A and B of the following Q 5. network.

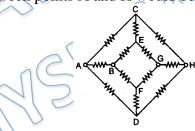
- (a) 4
- (b) 8
- (c) 13
- (d) 10
- Eight identical resistance r each are connected as shown. If equivalent resistance Q 6. between AD is R_1 and that between AC is R_2 then $\frac{R_1}{R_2}$



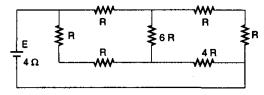
- (a) 4:5
- (b) 2:3
- (c) 3:5
- (d) 1:3
- Q 7. Thirteen resistors each of resistance H are connected in the circuit as shown in figure. Net resistance between A and B is:



hysicsaholics



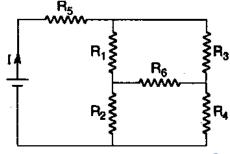
- (a) 2R
- (b) 4R/3
- (c) 2R/3
- (d) R
- Eight resistances each of resistance 50Ω are connected in the circuit as shown in figure. Q 8. The equivalent resistance between A and B is:

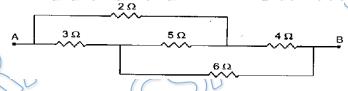

(a) $\frac{80}{3}\Omega$ (c) $\frac{150}{7}\Omega$

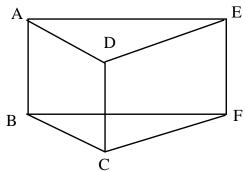
- Twelve resistors each of resistance 1 Ω are connected in the circuit shown in figure. Q 9. Net resistance between points A and H would be

- (b) 1Ω

- Q 10. A battery of internal resistance 4Ω is connected to the network of resistances as shown. In order that the maximum power can be delivered to the network the value of R in Ω should be



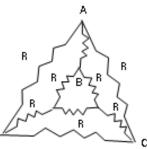

hysicsaholics


- (a) $\frac{4}{9}$
- (b) 2
- (c) $\frac{8}{3}$ (d) 18
- Q 11. In the given circuit, it is observed that the current l is independent of the value of the resistance R₆. Then, the resistance values must satisfy

- (a) $R_1R_2R_5 = R_3R_4R_6$
- (b) $\frac{1}{R_5} = \frac{1}{R_G} = \frac{1}{R_1 + R_2} + \frac{1}{R_3 + R_4}$ (c) $R_1 R_4 = R_2 R_3$
- (d) $R_1 R_3 = R_2 R_4$
- Q 12. In the circuit shown, some potential difference is applied between A and B. The equivalent In the circuit shown, resistance between A and B is R. 2Ω

- (a) No current flows through the 5- Ω resistor.
- (b) $R = 15\Omega$
- (c) $R = 12.5 \Omega$
- (d) $R = \frac{18}{5}\Omega$
- Q 13. Find effective resistance between A and B, if all sides of prism have equal resistance R.

P hysicsaholics

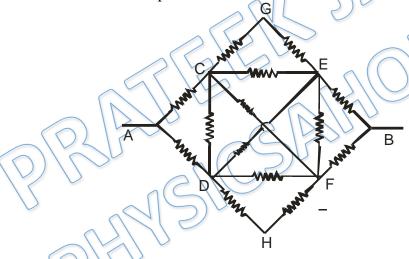


(a) 3R/5

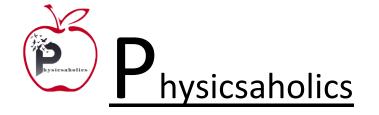
(b) 2R/5

(c) R/5

- (d) 2R
- Q 14. Find effective resistance between A and B, if all sides of prism have equal resistance R.



(a) 3R/5


(b) 2R/5

(c) R/8

- (d) 2R
- Q 15. Fourteen identical resistors each of resistance r are connected as shown. The equivalent resistance between the points A and B is

- (a) r
- (b) 14 r
- (c) r/14
- (d) 1.2 r

Answer Key

Q.1 d	Q.2 c	Q.3 a	Q.4 a	Q.5 a
Q.6 a	Q.7 c	Q.8 a	Q.9 с	Q.10 b
Q.11 c	Q.12 a, d	Q.13 a	Q.14 a	Q.15 d